ZIL Performance: How | Doubled Sync
Write Speed

Prakash Surya | October 24 2017

1/73

Agenda

1. What is the ZIL?

2. How is it used? How does it work?

3. The problem to be fixed; the solution.

4. Details on the changes | made.

5. Performance testing and results.

*Press "p" for notes, and "c" for split view.

2/73

1 - What is the ZIL?

3/73

What is the ZIL?

e ZIL: Acronym for (Z)FS (I)ntent (L)og
o Logs synchronous operations to disk, before spa_sync()
o What operations get logged?
m 7zfs_create, zfs_remove, zfs_write, etc.
= Doesn't include non-modifying ZPL operations:
» 7zfs read, zfs_seek, etc.
o What gets logged?
= The fact that a logical operation is occurring is logged
= zfs_remove — directory object ID + name only

= Notlogging which blocks will change due to logical operation

473

When is the ZIL used?

 Always"
o ZPL operations (itx's) logged via in-memory lists
o lists of in-memory itx's written to disk via zil_commit()

o zil_commit() called for:

. sksk
= any sync write

*Except when dataset configured with: sync=disabled. **Except when dataset configured with: sync=always.

5/73

What is the SLOG?

e SLOG: Acronym for (S)eperate (LOG) Device
e Conceptually, SLOG is different than the ZIL

o ZIL is mechanism for writing, SLOG is device written to
e An SLOG is not necessary

o By default (no SLOG), ZIL will write to main pool VDEVSs

e An SLOG can be used to improve latency of ZIL writes

o When attached, ZIL writes to SLOG instead of main pool*

* . .
For some operations; see code for details.

6/73

Why does the ZIL exist?

Writes in ZFS are "write-back”

o Data is first written and stored in-memory, in DMU layer

o Later, data for whole pool written to disk via spa_sync()

Without the ZIL, sync operations could wait for spa_sync()

o spa_sync() can take tens of seconds (or more) to complete

Further, with the ZIL, write amplification can be mitigated
o A single ZPL operation can cause many writes to occur

o ZIL allows operation to "complete” with minimal data written

ZIL needed to provide "fast” synchronous semantics to applications

o Correctness could be acheived without it, but would be "too slow"

7173

ZIL On-Disk Format

« Each dataset has it's own unique ZIL on-disk

» ZIL stored on-disk as a singly linked list of ZIL blocks (lwb's)

[Uberblock]

Y Y

[Contents] [Contents]

....................

8/73

2 - How is the ZIL used?

9/73

How is the ZIL used?

o ZPL will generally interact with the ZIL in two phases:
1. Log the operation(s) — zil_itx_assign
= Tells the ZIL an operation is occurring
2. Commit the operation(s) — zil_commit

= Causes the ZIL to write log record of operation to disk

10/73

Example: zfs_write

o zfs_write = zfs_log_write
e 7zfs _log write

- zil_1itx_create

- zi1l_itx_assign

o 7zfs write = zil commit

11/73

Example: zfs_fsync

e fsync = zil _commit
o fsync doesn't create any new modifications
o only writes previous itx's to disk

» thus, no zfs_log_fsync function

12 /73

Contract between ZIL and ZPL.

e Parameters to zil_commit: ZIL pointer, object number
o These uniquely identify an object whose data is to be committed
e When zil _commit returns:
o Operations relevant to the object specified, will be persistent on disk
o relevant — all operations that would modify that object
o persistent — Log block(s) written (completed) — disk flushed

» Interface of zil_commit doesn't specify which operation(s) to commit

13/73

2 - How does the ZIL work?

14 /73

How does the ZIL work?

e In memory ZIL contains an itxg_t structure”
e Each itxg_t contains:
o A single list of sync operations (for all objects)

o Object specific lists of async operations

*Actually multiple itxg_t structures, one per-txg.

15/73

Example: itx lists

[sync list itx S1 itx S2

[object A list itx A1 itx A2

it

[object B list itx B1

16 /73

How are itx's written to disk?

e zil_commit handles the process of writing itx_t's to disk:

17 /73

How are itx's written to disk?

e zil_commit handles the process of writing itx_t's to disk:

1. find all relevant itx's, move them to the "commit list"

18 /73

Example: zi1_commit ObjectB

[object B list

[commit list

19/73

Example: zi1_commit ObjectB

[object B list

[commit list

20/73

Example: zi1_commit ObjectB

[sync list

[object A list

[object B list

[commit list

21/73

Example: zi1_commit ObjectB

[sync list

[object A list

[object B list

[commit list

—{ixst)—(ixsz j—{(ixe1)

2273

Example: zi1_commit ObjectB

[sync list

[object A list

[object B list

[commit list

R CEV R CEV R CLD

2373

How are itx's written to disk?

e zil_commit handles the process of writing itx_t's to disk:

1 M s for obiectbei ited,] T

2. Write all commit list itx's to disk

24 /73

Example: zi1_commit ObjectB

25/73

Example: zi1_commit ObjectB

[commit list } » itx S2

26/73

Example: zi1_commit ObjectB

[commit list } > itx S2

27173

Example: zi1_commit ObjectB

[commit list } > itx S2

28 /73

Example: zi1_commit ObjectB

[commit list } > itx S2

lwb 1

‘EiIHI%IIII')

[ZIL header

29/73

Example: zi1_commit ObjectB

[commit Iist} > itx B1)

lwb 1

(%iIHI%IIII')

[ZIL header

30/73

Example: zi1_commit ObjectB

[commit Iist} > itx B1)

lwb 1

(%iIHI%IIII')

[ZIL header

31/73

Example: zi1_commit ObjectB

[commit list]

lwb 1

(%iIHI%IIII')

[ZIL header

32/73

Example: zi1_commit ObjectB

[commit list]

lwb 1

(EiIH!HIIII')

[ZIL header

33/73

How are itx's written to disk?

e zil_commit handles the process of writing itx_t's to disk:

1 M s for obiectbei itod_to-t] L
9 Writeal £ Lot e il

3. Wait for all ZIL block writes to complete

34/73

Example: zi1_commit ObjectB

[commit list]

Iwb 1

(EiIHIHIIIII’

[ZIL header

35/73

Example: zi1_commit ObjectB

[commit list]

lwb 1

[ZIL header

sz | o

36 /73

Example: zi1_commit ObjectB

[commit list]

lwb 1

[ZIL header

st

sz | o

37173

How are itx's written to disk?

e zil_commit handles the process of writing itx_t's to disk:

4. Flush VDEVs

38/73

How are itx's written to disk?

e zil_commit handles the process of writing itx_t's to disk:

5. Notify waiting threads

39/73

3 - Problem

40 /73

Problem

1. itx's grouped and written in "batches"
o The commit list constitutes a batch
o Batch size proportional to sync workload on system
2. Waiting threads only notified when all ZIL blocks in batch complete

3. Only a single batch processed at a time

41/73

Problem

"""
. B (e
"""
- |waI|wa][|wa - wb VV
"""
- wb G wb K Iwa]- lwb W
"""
1))

| -

« Time spent servicing lwb's for each disk

e Color indicates order waiting threads notified

42 /73

3 - Solution

43 /73

Solution

e Remove concept of "batches":
1. Allow zil_commit to issue new ZIL block writes immediately
= In contrast to waiting for the current batch to complete
2. Notify threads immediately when dependent 1wb's on disk

= In contrast to waiting for all lwb's on disk

44 [73

Problem

"""
. B (e
"""
- |waI|wa][|wa - wb VV
"""
- wb G wb K Iwa]- lwb W
"""
1))

| -

« Time spent servicing lwb's for each disk

e Color indicates order waiting threads notified

45 /73

Solution

-- |

« Time spent servicing lwb's for each disk

e Color indicates order waiting threads notified

46 /73

4 - Details on the Changes | Made

4773

Before

[batch root]
Step 1 |

[lwb 1 [lwb 2] lwb 3]

[flush root]

Step 2 VRN

[VDEV 1] [VDEV 2]

Step 3 @

48 [73

Before

Step 1 /: | :\

[flush root]

Step 2 V2N

{ VDEV 1 } [VDEV 2 }

Step 3 @

49 /73

Before

Step 1 /: | :\
Step 2 : :

Step 3

50/73

Before

Step 1 /: | :\
Step 2 : :

Step 3

51/73

Before

[batch root]
Step 1 |

[lwb 1 [lwb 2] lwb 3]

[flush root]

Step 2 VRN

[VDEV 1] [VDEV 2]

Step 3 @

52/73

Before

Step 1 /: l :\
Step 2 : :

Step 3

53/73

After
V(..)—~v)

[lwb 3
L) g

[lwb 2

RN
[lwb 2 write] [VDEVZfI h]

[Ib1

/\

[lwb 1 write VDEV1fI h]

)

54 /73

After
V(.)—v)

[lwb 3

[lwb 3 write] VDEV 1 flush] @ Q @

[lwb 2

RN
[lwb 2 write] [VDEV 2 flush] @ e @

)

[Iwb 1 write] [VDEV 1 flush]

55/73

After
V(.)—v)

[lwb 3

[lwb 3 write] VDEV 1 flush] @ Q @

[lwb 2

RN

[lwb 2 write } [VDEV 2 flush]

)

[VDEV 1 flush]

56 /73

After
V(.)—v)

[lwb 3
L) g

[lwb 2

/N
[lwb 2 write] [VDEV 2 flush] @ ‘ @

SR

57173

58/73

59/73

lwb 2
[Iwb2wt VDEV2ﬂ h]

60/ 73

After
eV)y

[lwb 3

[lwb 3 write] VDEV 1 flush] @ ‘ @

[lwb 2

/N

[lwb 2 write } [VDEV 2 flush]

)

[VDEV 1 flush]

61/73

After
eV)y

[lwb 3

[lwb 3 write] VDEV 1 flush] @ ‘ @

[lwb 2

/N

[lwb 2 write } [VDEV 2 flush]

)

[VDEV 1 flush]

62 /73

After

[VDEV1fMSh]

63 /73

After

Y Y

[lwb 2

S\
[lwb 2 write] [VDEV 2 flush] @ Q @

64 /73

Iwb 2
[Iwb2wt VDEV2ﬂ h]

65/ 73

New Tunable: Twb Timeout

commit list

N\
ZIL header

o

——

ZIL header
[+

Iwb 2
itx S2 | itx B1 >
S wb3
{m

66 /73

5 - Performance testing and results

67/73

% change in write iops reported by fio

140

120

100

80

60

40

20

~83% Increase in IOPs on Average - Max Rate - 8 HDDs

fio -- % change in write iops vs. number of fio threads

—&— 8 hdd

4 8 16 32 64 128 256 512 1024
number of fio threads issuing writes

68 /73

% change in write iops reported by fio

140

120

100

~48% Increase in I0Ps on Average - Max Rate - 8 SSDs

fio -- % change in write iops vs. number of fio threads

—®— 8 ssd

4 8 16 32 64 128 256
number of fio threads issuing writes

69/73

% change in average write latency reported by fio

~27% Decrease in Latency on Average - Fixed Rate - 8 HDDs

fio -- % change in average write latency vs. number of fio threads

4 8 16 32 64 128 256 512 1024
number of fio threads issuing writes

*IOPs increased with new code, and >64 threads; those data points omitted.

70/73

% change in average write latency reported by fio

~16% Decrease in Latency on Average - Fixed Rate - 8 SSDs

fio -- % change in average write latency vs. number of fio threads

—®— 8 ssd

4 8 16 32 64 128 256 512 1024
number of fio threads issuing writes

71/ 73

More Details

Two fio workloads were used:

1. each thread submitting sync writes as fast as it could

2. each thread submitting 64 sync writes per second

1, 2, 4, and 8 disk zpools; both SSD and HDD

fio threads ranging from 1 to 1024; increasing in powers of 2

Full details can be found here

72173

https://www.prakashsurya.com/post/2017-09-08-performance-testing-results-for-openzfs-447/

End

73173

