Fast Clone Deletion

Sara Hartse | Delphix

Outline

Clone deletion now
Fast deletion algorithm
Algorithm scalability
Performance gains

Clone Deletion

Clones are mutable copies of existing datasets

Copy on write means that creating a clone is as simple as pointing to the
root of a given snapshot

Throughout the course of the clone’s lifetime it diverges from the original
Deleting a clone requires determining which blocks are still shared with the

snapshot and which blocks are unique to the clone
o lterate over on-disk tree, ignore sections based on birth time

Best Case

Contiguous Writes

] Original
|Clone

=
TR =TT

Worst Case

Sparse writes
] Original
1 Clone

—
s

Time to Delete Clone with 500MB of New Data

20 B random

16.52 W contiguous

Time to delete the clone (seconds)

1 2 5 10 20 30

Size of original dataset (G)

Fast Delete

Keep track of clone specific writes and deletes as they occur

Store them in a livelist

To delete the clone, just have to process each element in the livelist
Work is proportional to the number of writes to the clone

Livelist algorithm

e Enqueue blockpointers allocated and freed on the clone as the writes occur

zm\:)A_\‘o
F F

4 —>

e When it's time to delete the clone, determine the not yet freed blocks and free

them

o Step backwards through the livelist: insert frees into an AVL tree, check for membership of
allocs in the AVL tree.

Start at the end of the Livelist

Insert block 4 in AVL tree

Check for block 5 in AVL tree. Free it.

Free

Check for block 4 in AVL tree. Ignore it.

Free

Insert block 3 into AVL tree

Free

Insert block 1 into AVL tree

Free

Check for block 3 in AVL tree. Ignore it.

Free

Check for block 2 in AVL tree. Free it.

Check for block 1 in AVL tree. Ignore it.

Free

Pros

Deletion work is now
proportional to the number of
writes to the clone

Low insertion cost - we know
exactly where to put the
block pointers

Cons

Livelist can grow arbitrarily
large and we’ll have to load
the whole thing into memory
to delete the clone

Tricky to destroy
incrementally

Sublists

e Break livelist into smaller sublists
e Decide which sublist to insert into
based on birth time
How big should they be?
Natural way to implement
incremental destroy xg 4- 6

txg 1

txg2-3

txg 7 -

:
A

Asynchronous Destroy

e \Want to limit the amount of work we do per sync
o Only destroy one sublist each transaction group

e Loading a sublist into memory could be very expensive
e Some delete work must be synchronous and some can be in the background

> zfs destroy clone

Store livelist id in pool
Signal thread
>

Load livelist into memory
Determine blkptrs to delete
Call synctask

Free blkptrs
Update livelist info in pool

Pros Cons

e Limited how much memory is e Number of sublists can grow
arbitrarily large

loaded in at once _
_ o The more sublists we have, the
e Can delete quickly and more costly insertion is

incrementally o Disk space

Condensing sublists

e After a block is freed, the livelist contains irrelevant information
e \We can condense the list to store only what we need

Merging sublists

e Now we can merge smaller sublists and reduce their overall number

HORO

-

In Summary

Made the work of deleting a clone proportional to the number of
writes to that clone using a livelist

Limited memory loaded at once using sublists
o Makes it easier to delete incrementally and asynchronously

Slowed the growth of the number of sublists by periodically
condensing the sublists

Least Improvement: contiguous writes

Time taken to destroy: existing method v/s livelist

time in minutes

0.08

0.06

0.04

0.02

continuously writing 50MB of continuously writing 500MB of
data data

data written in MB

B old_way
B livelist

-
o b
prnd.... prsenm

Most Improvement: sparse writes

Time taken to destroy a clone: existing method v/s liveliest

50 B existing_method
B livelist
40
1] |

@ 30 y: <
S B |
£ [| [|
E 20 . L W— —— A —
=
(4] / | [L -
:‘g 1/ [/‘ﬁ \

10

0 0.033 0.33

clone has 50GB of data, clone has 500GB of data,
write 50MB of sparse data write 500MB of sparse data

data written in MB

Conclusion

e Livelist method of clone deletion gives dramatic performance improvements in
the worst case scenarios
o Gains in the best case as well

e Tweaks were needed to make the algorithm scalable for production use
o Balancing space and efficiency

e Coming soon!

Thank you!

Sowrabha Gopal
Matt Ahrens

Serapheim Dimitropoulos

Questions?

