Fast Clone Deletion

Sara Hartse | Delphix

Outline

- Clone deletion now
- Fast deletion algorithm
- Algorithm scalability
- Performance gains

Clone Deletion

- Clones are mutable copies of existing datasets
- Copy on write means that creating a clone is as simple as pointing to the root of a given snapshot
- Throughout the course of the clone's lifetime it diverges from the original
- Deleting a clone requires determining which blocks are still shared with the snapshot and which blocks are unique to the clone
 - Iterate over on-disk tree, ignore sections based on birth time

Best Case

Worst Case

Time to Delete Clone with 500MB of New Data

Size of original dataset (G)

Fast Delete

- Keep track of clone specific writes and deletes as they occur
- Store them in a livelist
- To delete the clone, just have to process each element in the livelist
- Work is proportional to the number of writes to the clone

Livelist algorithm

Enqueue blockpointers allocated and freed on the clone as the writes occur

- When it's time to delete the clone, determine the not yet freed blocks and free them
 - Step backwards through the livelist: insert frees into an AVL tree, check for membership of allocs in the AVL tree.

Start at the end of the Livelist

Insert block 4 in AVL tree

Check for block 5 in AVL tree. Free it.

Check for block 4 in AVL tree. Ignore it.

Insert block 3 into AVL tree

Insert block 1 into AVL tree

Check for block 3 in AVL tree. Ignore it.

Check for block 2 in AVL tree. Free it.

Check for block 1 in AVL tree. Ignore it.

Pros

- Deletion work is now proportional to the number of writes to the clone
- Low insertion cost we know exactly where to put the block pointers

Cons

- Livelist can grow arbitrarily large and we'll have to load the whole thing into memory to delete the clone
- Tricky to destroy incrementally

Sublists

- Break livelist into smaller sublists
- Decide which sublist to insert into based on birth time
- How big should they be?
- Natural way to implement incremental destroy

Asynchronous Destroy

- Want to limit the amount of work we do per sync
 - Only destroy one sublist each transaction group
- Loading a sublist into memory could be very expensive
- Some delete work must be synchronous and some can be in the background

```
> zfs destroy clone
Store livelist id in pool
Signal thread
>
```

Load livelist into memory
Determine blkptrs to delete
Call synctask

```
Free blkptrs
Update livelist info in pool
```

Pros

- Limited how much memory is loaded in at once
- Can delete quickly and incrementally

Cons

- Number of sublists can grow arbitrarily large
 - The more sublists we have, the more costly insertion is
 - Disk space

Condensing sublists

- After a block is freed, the livelist contains irrelevant information
- We can condense the list to store only what we need

Merging sublists

Now we can merge smaller sublists and reduce their overall number

In Summary

- Made the work of deleting a clone proportional to the number of writes to that clone using a livelist
- Limited memory loaded at once using sublists
 - Makes it easier to delete incrementally and asynchronously
- Slowed the growth of the number of sublists by periodically condensing the sublists

Least Improvement: contiguous writes

Time taken to destroy: existing method v/s livelist

data written in MB

Most Improvement: sparse writes

Time taken to destroy a clone: existing method v/s liveliest

data written in MB

Conclusion

- Livelist method of clone deletion gives dramatic performance improvements in the worst case scenarios
 - Gains in the best case as well
- Tweaks were needed to make the algorithm scalable for production use
 - Balancing space and efficiency
- Coming soon!

Thank you!

Sowrabha Gopal

Matt Ahrens

Serapheim Dimitropoulos

Questions?