
Fast Clone Deletion
Sara Hartse | Delphix

Outline
● Clone deletion now
● Fast deletion algorithm
● Algorithm scalability
● Performance gains

Clone Deletion
● Clones are mutable copies of existing datasets
● Copy on write means that creating a clone is as simple as pointing to the

root of a given snapshot
● Throughout the course of the clone’s lifetime it diverges from the original
● Deleting a clone requires determining which blocks are still shared with the

snapshot and which blocks are unique to the clone
○ Iterate over on-disk tree, ignore sections based on birth time

Best Case
Contiguous Writes

Ronny Reader

Wendy Writer Abby Author

Casey CreatorMolly MakerVinny ViewerPerry Presenter

Uber block

Indirect Block Indirect Block

Indirect BlockIndirect BlockIndirect BlockIndirect Block
Indirect Block

Indirect Block

Root Block
Original
Clone

Worst Case
Sparse writes

Ronny Reader

Wendy Writer Abby Author

Casey CreatorMolly MakerVinny ViewerPerry Presenter

Uber block

Indirect Block Indirect Block

Indirect BlockIndirect BlockIndirect BlockIndirect Block
Indirect Block

Indirect Block

Root Block

Indirect Block

Indirect Block

Indirect Block Indirect Block

Original
Clone

Fast Delete
● Keep track of clone specific writes and deletes as they occur
● Store them in a livelist
● To delete the clone, just have to process each element in the livelist
● Work is proportional to the number of writes to the clone

Livelist algorithm

● Enqueue blockpointers allocated and freed on the clone as the writes occur

● When it’s time to delete the clone, determine the not yet freed blocks and free
them

○ Step backwards through the livelist: insert frees into an AVL tree, check for membership of
allocs in the AVL tree.

A1 A2 A3 F1 F3 A4 A5 F4

A1 A2 A3 F1 F3 A4 A5 F4

Start at the end of the Livelist

A1 A2 A3 F1 F3 A4 A5

4

Insert block 4 in AVL tree

A1 A2 A3 F1 F3 A4

4

5

Free

Check for block 5 in AVL tree. Free it.

A1 A2 A3 F1 F3

5

Free

Check for block 4 in AVL tree. Ignore it.

A1 A2 A3 F1

5

Free

3

Insert block 3 into AVL tree

A1 A2 A3

5

Free

3

1

Insert block 1 into AVL tree

A1 A2

5

Free

1

Check for block 3 in AVL tree. Ignore it.

A1

5

Free

1
2

Check for block 2 in AVL tree. Free it.

5

Free

2

Check for block 1 in AVL tree. Ignore it.

Cons
● Livelist can grow arbitrarily

large and we’ll have to load
the whole thing into memory
to delete the clone

● Tricky to destroy
incrementally

● Deletion work is now
proportional to the number of
writes to the clone

● Low insertion cost - we know
exactly where to put the
block pointers

Pros

Sublists
● Break livelist into smaller sublists
● Decide which sublist to insert into

based on birth time
● How big should they be?
● Natural way to implement

incremental destroy

A1 A2 F1 A3

A4 A5 A6 F5 F4 F6

A7 F7 A8 F8 A9

A10 A11

txg 1

txg 2 - 3

txg 4 - 6

txg 7 -

Asynchronous Destroy
● Want to limit the amount of work we do per sync

○ Only destroy one sublist each transaction group

● Loading a sublist into memory could be very expensive
● Some delete work must be synchronous and some can be in the background

> zfs destroy clone

Store livelist id in pool
Signal thread
>

Load livelist into memory
Determine blkptrs to delete

Call synctask

Free blkptrs
Update livelist info in pool

Cons
● Number of sublists can grow

arbitrarily large
○ The more sublists we have, the

more costly insertion is
○ Disk space

● Limited how much memory is
loaded in at once

● Can delete quickly and
incrementally

Pros

Condensing sublists

● After a block is freed, the livelist contains irrelevant information
● We can condense the list to store only what we need

A1 A2 F1 A3

A2 A3

Merging sublists

● Now we can merge smaller sublists and reduce their overall number

A1 A2 F1 A3

A4 A5 A6 F5 F4

A2 A3 A6

● Made the work of deleting a clone proportional to the number of
writes to that clone using a livelist

● Limited memory loaded at once using sublists
○ Makes it easier to delete incrementally and asynchronously

● Slowed the growth of the number of sublists by periodically
condensing the sublists

In Summary

Least Improvement: contiguous writes

Ron
ny

Rea
der

Wen
dy

Writ
er

Abb
y

Auth
or

Cas
ey

Crea
tor

Moll
y

Mak
er

Vinn
y

Vie
wer

Perr
y

Pres
ente

r

Most Improvement: sparse writes

Ronny
Reade

r
Wend

y
Writer

Abby
Author

Casey
Creato

r

Molly
Maker

Vinny
Viewe

r

Perry
Prese
nter

Conclusion
● Livelist method of clone deletion gives dramatic performance improvements in

the worst case scenarios
○ Gains in the best case as well

● Tweaks were needed to make the algorithm scalable for production use
○ Balancing space and efficiency

● Coming soon!

Thank you!
Sowrabha Gopal

Matt Ahrens

Serapheim Dimitropoulos

Questions?

