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Outline
● Clone deletion now
● Fast deletion algorithm
● Algorithm scalability
● Performance gains



Clone Deletion
● Clones are mutable copies of existing datasets
● Copy on write means that creating a clone is as simple as pointing to the 

root of a given snapshot
● Throughout the course of the clone’s lifetime it diverges from the original
● Deleting a clone requires determining which blocks are still shared with the 

snapshot and which blocks are unique to the clone
○ Iterate over on-disk tree, ignore sections based on birth time
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Worst Case
Sparse writes 
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Fast Delete
● Keep track of clone specific writes and deletes as they occur 
● Store them in a livelist
● To delete the clone, just have to process each element in the livelist
● Work is proportional to the number of writes to the clone



Livelist algorithm

● Enqueue blockpointers allocated and freed on the clone as the writes occur

● When it’s time to delete the clone, determine the not yet freed blocks and free 
them

○ Step backwards through the livelist: insert frees into an AVL tree, check for membership of 
allocs in the AVL tree. 
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Start at the end of the Livelist 
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Check for block 5 in AVL tree. Free it. 
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Check for block 2 in AVL tree. Free it. 
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Cons
● Livelist can grow arbitrarily 

large and we’ll have to load 
the whole thing into memory 
to delete the clone

● Tricky to destroy 
incrementally 

● Deletion work is now 
proportional to the number of 
writes to the clone

● Low insertion cost - we know 
exactly where to put the 
block pointers

Pros



Sublists
● Break livelist into smaller sublists 
● Decide which sublist to insert into 

based on birth time
● How big should they be?
● Natural way to implement 

incremental destroy
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Asynchronous Destroy
● Want to limit the amount of work we do per sync

○ Only destroy one sublist each transaction group

● Loading a sublist into memory could be very expensive 
● Some delete work must be synchronous and some can be in the background

   
> zfs destroy clone

Store livelist id in pool
Signal thread
>

Load livelist into memory
Determine blkptrs to delete

Call synctask

Free blkptrs
Update livelist info in pool



Cons
● Number of sublists can grow 

arbitrarily large
○ The more sublists we have, the 

more costly insertion is
○ Disk space

● Limited how much memory is 
loaded in at once

● Can delete quickly and 
incrementally

Pros



Condensing sublists 

● After a block is freed, the livelist contains irrelevant information
● We can condense the list to store only what we need
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Merging sublists 

● Now we can merge smaller sublists and reduce their overall number 
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● Made the work of deleting a clone proportional to the number of 
writes to that clone using a livelist

● Limited memory loaded at once using sublists
○ Makes it easier to delete incrementally and asynchronously

● Slowed the growth of the number of sublists by periodically 
condensing the sublists

In Summary
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Most Improvement: sparse writes
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Conclusion
● Livelist method of clone deletion gives dramatic performance improvements in 

the worst case scenarios
○ Gains in the best case as well

● Tweaks were needed to make the algorithm scalable for production use
○ Balancing space and efficiency

● Coming soon!
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