
ZStandard
in ZFS

Allan Jude -- allanjude@freebsd.org

Introduction

● 16 Years as FreeBSD Server Admin
● FreeBSD committer (ZFS, installer, boot

loader, GELI [disk encryption], ucl, xo)
● FreeBSD Core Team (July 2016 - 2018)
● Co-Author of “FreeBSD Mastery: ZFS” and

“FreeBSD Mastery: Advanced ZFS” with
Michael W. Lucas

● Architect of the ScaleEngine Video CDN
● Host of BSDNow.tv Podcast
● Manage Over 1PB of ZFS storage across 30

locations around the globe

What is ZStandard

● New compression algorithm out of Facebook
● Created by Yann Collet, creator of LZ4
● Designed to provide gzip level compression

but at much higher speeds
● Adaptive algorithm with multiple

compression techniques: Finite State
Entropy encoder, Huffman encoder

● 22 levels (speed & memory tradeoff)
● Dictionary Training

Ratio vs Speed Comparison (4.0GHz)

 Compressor Ratio Compress Decompress
Zstd 1.1.3 (-1) 2.877 430 MB/s 1110 MB/s

Zlib 1.2.8 (-1) 2.743 110 MB/s 400 MB/s

Brotli 0.5.2 2.708 400 MB/s 430 MB/s

Quicklz 1.5.0 2.238 550 MB/s 710 MB/s

Lzo1x 2.0.9 2.108 650 MB/s 830 MB/s

Lz4 1.7.5 2.101 720 MB/s 3600 MB/s

Snappy 1.1.3 2.091 500 MB/s 1650 MB/s

Lzf 3.6 2.077 400 MB/s 860 MB/s

Integration with ZFS

● ZFS has a very clean API to integrate
additional compression algorithms

● ZSTD provides a mechanism to use your
own memory allocator, with an opaque
pointer for tracking. This fits the FreeBSD
kernel memory allocator very nicely.

● Code Review Open:
● https://reviews.freebsd.org/D11124

https://reviews.freebsd.org/D11124

Integration with FreeBSD

● Import ZSTD to contrib/zstd
● Has been upgraded a few times already
● Build lib/libzstd (libprivatezstd)

○ This library is only available to FreeBSD tools, any
packages will depend on zstd from packages

● Modify zfs.ko to link against libprivatezstd
● It works!
● Integration with libstand so you can boot

ZFS compressed with ZSTD
● Working on replacing gzip/bzip2 in loader for

compressed kernel & mfsroot

Memory Management
● Currently an array of kmem_caches per major

record size and compression level using
ZSTD_estimateCCtxSize_advanced()

● Could use ZSTD_initStaticCCtx()
● Prototype uses multiple kmem caches to avoid

consuming more memory than needed
● Decompression context is 152K

Record Size zstd -1 zstd -3 zstd -19

16K 136K 200K 488K

128K 524K 1,004K 2,804K

1024K 556K 1,260K 13,556K

8192K 556K 1,260K 50,420K

How to Handle Levels?

● ZSTD has 19 (or 22 w/ ultra mode) levels.
● Adding all of these as unique compression types to

the compress= property would eat up a lot of the
limited namespace

● A new compress_level= property?
● Meaning would change with the compress=

property, might be confusing to users
● How do you limit the acceptable values?
● Level 19 does not apply to gzip
● For now, prototype has:

zstd-min (1), zstd-default (3), zstd-max (19)

Level Comparison ZSTD (3.6GHz)
zstd -b1 -e22 silesia_corpus

Lvl Ratio Comp Decomp
1 2.877 335 MB/s 687 MB/s
2 3.021 256 MB/s 650 MB/s
3 3.164 195 MB/s 625 MB/s
4 3.196 183 MB/s 625 MB/s
5 3.273 113 MB/s 612 MB/s
6 3.381 84.2 MB/s 642 MB/s
7 3.432 67.0 MB/s 657 MB/s
8 3.473 53.2 MB/s 670 MB/s
9 3.492 46.0 MB/s 674 MB/s
10 3.522 33.1 MB/s 682 MB/s
11 3.561 25.9 MB/s 678 MB/s

Lvl Ratio Comp Decomp
12 3.585 19.3 MB/s 686 MB/s
13 3.605 14.3 MB/s 691 MB/s
14 3.627 9.7 MB/s 691 MB/s
15 3.655 7.6 MB/s 704 MB/s
16 3.701 6.3 MB/s 700 MB/s
17 3.769 4.9 MB/s 700 MB/s
18 3.825 4.2 MB/s 700 MB/s
19 3.923 3.3 MB/s 704 MB/s
20 3.996 2.7 MB/s 585 MB/s
21 4.017 2.3 MB/s 585 MB/s
22 4.020 1.9 MB/s 585 MB/s

gz-1 2.743 77.7 MB/s 252 MB/s
gz-6 3.106 25.6 MB/s 265 MB/s
gz-9 3.133 10.8 MB/s 265 MB/s

Compress FreeBSD 11.1: 1.70 GB

Real World: Compressed Databases

● As EuroBSDCon 2017 in Paris last month, I
did some on-the-spot performance analysis
for a European payment processor

● They use a 128kb record size for their
MySQL database, on purpose. The
database is over 25TB all on SSD, so they
rely on the high compression ratio to keep
up with the demand for SSDs

● Write amplification is less of an issue since it
is basically an append-only database

Our Pay-Per-View Database

● MySQL database is 14.2G uncompressed

Compression
Algorithm

16K 128K 1024K

Size Ratio Time Size Ratio Time Size Ratio Time

lz4 3.76G 3.79x 0:55 2.90G 4.92x 0:54 2.81G 5.44 0:50

gzip-6 2.72G 5.27x 7:09 2.03G 7.02x 2:07 1.93G 7.91x 1:43

zstd-min 2.52G 5.68x 0:59 1.80G 7.94x 0:49 1.64G 9.33x 0:46

zstd-def 2.49G 5.75x 1:04 1.77G 8.06x 0:51 1.58G 9.71x 0:50

zstd-max 2.30G 6.24x 23:27 1.50G 9.52x 28:31 1.28G 11.99x 15:35

Dictionary Compression

● One of the major features of ZSTD is a
special custom dictionary compression mode

● The idea is for compression of structured
data, such as multiple JSON messages with
the same key names. Train ZSTD with the
template and get better and faster
compression and decompression

● Would need some API to provide ZFS with 1
or more dictionaries per dataset

● Could this be used to compress arrays of
block pointers? Or Indirect Blocks?

Compressed Record Size?

● Would it be practical to make a configuration
where data is fed into the compression
algorithm in chunks until the PHYSICAL
record size is the desired value?

● What other impacts might this have on the
system?

● Might this save wasted slack on 4Kn drives?
● What would an API look like that allowed you

to continue to feed data in until the physical
record was full?

ZSTD Adaptive Compression

● ZSTD has grown an adaptive compression
feature, that automatically adjusts the
compression level for maximum throughput
on a throughput constrained output

● Typical use case: zfs send | compress |
ssh | uncompress | zfs recv

● Likely not useful for individual blocks
● Could be combined with Nexenta

“smartcompress” feature to get best
compression without blocking

ZSTD APIs

● What new APIs might we want?
● Would ZFS benefit from using stream

compression vs block compression?
● Some version of Early Abort like LZ4?
● Reduced memory modes for small blocks
● Does decompression context need to be >

150K if blocks are never more than 8M?
● More tuning and options for ZFS like

workloads for small blocks (4k-16k record
sizes for databases etc)

● ZSTD API that understand ABD / SGL

Start of the Project

● Aug 31 2016: ZSTD 1.0.0 released
● Sept 2016: I started integrating it into ZFS
● Found early on that ZSTD used some large

stack variables and caused random seeming
crashes (kernel stack overflow)

● Increases kstack_pages from 4 to 12 just to
prove it will work before going forward

● Attempted to work around this by extending
‘HEAPMODE’ to malloc() the larger stack
variables instead

● Early returns often made this is a bit messy

Timeline

● Oct 2016: Project stalled. Ifdef soup for
HEAPMODE was a bit much

● Oct 2016: ZFS Developers summit conflicts
with EuroBSDcon, I cannot attend

● Oct 2016: Saso Kiselkov works on ZSTD at
ZFS Hackathon

● 2016: Nothing seems to comes of it
● Dec 14 2016: ZSTD 1.1.2 released with

much reduced stack usage
● Jan 2017: FreeBSD Storage Summit

rekindles interest in ZSTD in ZFS

Early Progress

● Update my working tree with newer ZSTD
● Resolve merge conflicts, remove most of

HEAPMODE as it is no longer needed
● Solves most of the problems
● Build new ZFS kernel module and try it out
● Crashes with use-after-free or other memory

corruption issues -- my fault
● ZSTD has custom memory allocator

interface, so you can bring your own. Not
used “everywhere” though. Trying to fix that
did not go well.

Solution

● Replace few remaining ZSTD raw-malloc()
calls with #ifdef _KERNEL to use kernel
malloc (different prototype, extra arguments)

● Patch ends up relatively minor
● Talking with Yann Collet (ZSTD Author)

about fixing this
● Yann is very interested in any other API

requirements or suggests we have to better
integrate with Kernel and ZFS

BSDNow.tv

● Weekly video podcast about the latest news
in the BSD and IllumOS world

● Always looking for developers and active
community members to interview

● Our archives are full of goodies:
○ Matt Ahrens Kirk McKusick
○ George Wilson Josh Paetzel
○ Bryan Cantrill Justin Gibbs
○ Adam Leventhal Paweł Jakub Dawidek
○ Richard Yao Sean Chittenden
○ Alex Reese 100+ Others

