
ZFS development 
on FreeBSD

OpenZFS Developer Summit 2014
Xin Li, iXsystems, Inc./The FreeBSD Project

About myself
• FreeBSD developer since 2004; Release Engineer

and Deputy Security Officer of the project;

• Works for iXsystems on FreeNAS and related
products;

• Involved with ZFS maintenance on FreeBSD,
keeping the codebase up-to-date with Illumos
(most of the time the FreeBSD development trunk
would catch up with Illumos changes in the mean
of a few days).

Current FreeBSD 
ZFS applications

• As a general purpose server operating system
on bare metal servers;

• As a storage appliance (e.g. FreeNAS;
SpectraLogic BlackPearl, etc.);

• As a virtualization container (ClusterHQ/
HyberCluster, etc.)

Current FreeBSD 
release workflow

• One active development trunk ("head" or -CURRENT), one or
two maintenance development branch (-STABLE).

• "Major" (X.0) evert about 2 years, cut from -CURRENT;

• "Minor" (X.Y) release every about 9 months, cut from -STABLE;

• In the interim, security updates and serious bug/regressions
fixed via binary patching mechanism, freebsd-update against

• Users may choose to run -STABLE and roll their own releases;

• Developers are generally suggested to run -CURRENT

Current FreeBSD release
workflow (in release cycle)

• Source management via branching;

• A target release date is announced with schedule by release
engineering lead to developers;

• The development branch (either "head" or "stable") enters code
slush (no major changes) and then code freeze (no changes
without explicit re@ approval)

• Several BETA, RC's would be produced from the development
branch in about 2 weeks interval, installed to various FreeBSD.org
cluster systems.

• Eventually re@ would name the branch as "RELEASE", tag after
build and announce it to the world

http://FreeBSD.org

FreeBSD ZFS development -
goals

• Make it easier to upstream/downstream code
changes (use compatibility shims to provide
Solaris-alike kernel interfaces, limit and contain
FreeBSD specific changes in ZFS codebase, etc.)

• Continuously improve performance and reliability
on FreeBSD;

• Keep tree up-to-date with upstream Illumos
codebase; provide same or better boot-ability via
FreeBSD boot loader.

Current FreeBSD workflow
• Based on subversion;

• Illumos ZFS code imported into a vendor branch, merged
against development trunk "head/", validated and
committed; The imported layout is intended to make it
easy to upstream/downstream code changes easily.

• FreeBSD specific fixes/improvements committed to
development trunk directly; generic fixes usually
upstreamed via Illumos bug tracking system;

• Code merged to FreeBSD "stable" branch(es) after a settle
period, generally 2 weeks or so.

Tree structure

• src/[sys/]cddl/contrib/opensolaris/: vendor code,
layout same as Illumos’s usr/src/

• src/[sys/]cddl/compat/: FreeBSD compatibility
shims to provide Solaris like semantics

• src/sys/cddl/boot/: vendor code that is used and
modified specifically for boot loaders.

ZFS development on
FreeBSD

• Performance improvements by mitigating lock
contentions (upstreamed when applicable to
Illumos);

• zvol performance improvements (bypassing
GEOM layer; FreeBSD specific issue);

• sendfile(2) related improvements (FreeBSD
specific)

Code availability
• FreeBSD:

• GitHub: https://github.com/freebsd/freebsd

• Subversion (official): https://svn0.{us-west,us-
east,eu,ru}.FreeBSD.org/base/

• FreeNAS:

• GitHub: https://github.com/trueos/trueos

https://github.com/freebsd/freebsd
http://FreeBSD.org/base/
https://github.com/trueos/trueos

Q&A

