a Western Digital brand

iFlash

Shailendra Tripathi

Western Digital

©2017 Western Digital Corporation or its affiliates. All rights reserved.

- Background
- Resource Utilization
- iFlash
- L2ARC Model
- Results and Analysis
- All Flash and Application Use cases
- Conclusion

Spa – Tegile Flash Meta

Resource Utilization

- Dedicated Devices
 - Inflexible
 - Utilization Problem
 - Capacity
 - IOPS/Bandwidth
- Partitions
 - Somewhat Flexible
 - Static size partitioning
 - Shared Device "Noisy" neighbor
- Shared Device

Shared Devices

- Shared Capacity
- Shared IOPS / Bandwidth
- Varying Data Protection Need
 - Cache failure protection vs meta
- Widely different Characteristics
 - Throughput vs IOPS
- Latency vs Efficiency of Allocation
- Quality of Service
 - Priority / Weight
 - Enforcement

Priority

Slice LOG LOG Data / Cache **Priority Queue** LOG Meta Data/ Cache

iFlash - Implementation

- Per Class Allocator
- Per Class Queue Priority
- Per Class Metaslab Load Policy
- Per Class Data Protection Type
 - Meta/Data Mirror, Triple Mirror
 - Cache No redundancy
 - Log Mirror
- Utilize 3 copies of blkptr, Strict device Enforcement

Dynamic Resource Sharing

- Policy
- Change Detection Infrastructure
- Action
- Maintain
 - Capacity
 - Fragmentation level
 - Weight / Priority Assignment
 - IOPS and MBPS rate

Dynamic Capacity Sharing

First Creation

Enabler Changes

- Independent ARC and L2ARC
 - Independent Write Scale
- Compact 64 byte in-core structure
- Indexing similar extra CPU cost, massive memory saving
- L2ARC stored as 1 MB page
- Buffers stored byte-compressed.
- Header Page contains 48 byte mapping on the 1 MB page
- 1 MBs stored as per-device linked-list per rooted in uberblock

Device – Page Array

Page and Indexing

l2arc_buf_pghdr

Performance

Performance

All Flash

- Efficient Resource Sharing
- Adapts dynamically
- Exploits the bi-modal patterns
- Aggregate better performance (both IOPS and lower latency)
- Extensible All Flash
- Benefits extensible to application
 - DB /FS journal, Index

