DE[FI—!I)—(

Allocation Performance

George Wilson
gwilson@delphix.com
@zfsdude

© 2014 Delphix. All Rights Reserved

D=/ —HI>XX°

OpenZFS

Overview

e Allocation Overview
e Recent Performance Improvements
e Upcoming Perf Improvements

D=/ —HI>XX° OpenZFS

Allocation Overview -- Device selection

Devices are visited in round-robin fashion

Rotor :]l Device Selected

OpenZFS

Allocation Overview -- Metaslab selection

o e Metaslabs are

‘ given a weight

e Sorted by weight

e Select metaslab
with highest
weight

e Attemptto
allocate from
region

-1

A metaslab defines an
allocatable region on
a disk

(umoys ||e 10u) sgejselow 00z Alerewixolddy

D=/ —HI>XX° OpenZFs

What is a metaslab weight?

e Based on the free space of a metaslab

e Free space is “weighted” by the following factors
e Weight the space down by fragmentation, if pool supports
the space map histogram feature
e Weight the space up by offset
e Weight it up if the metaslab is currently loaded (i.e. its
been recently used)

e The higher the weight the “better” the metaslab

D=/ —HI>XX°

Allocation Overview -- Block selection

Free space within a
metaslab is stored in

an AVL tree
ﬁ e Select a free block
from the next highest
— T — offset .that has space
O EE (first fit)
e When space is low
2\ then pick a block that

best fits the the size of
the request (best fit)

OpenZFS

D=/ —HI>XX° OpenZFs

What are we trying to improve

e Write performance of aged pools
e Pools fragmentation increases over time
e Performance suffers as pool nears full capacity

e Frag benchmark

® Fills the pool to a specified capacity

e Writes random data to random offsets
e After benchmark reaches steady state, obtains the average

random write IOPS
e Focused Investigation

e Pool capacities <= 80%
e Don’t kill performance above 80%

D=/ —HI>XX° OpenZFs

Looking back... 2013 improvements

e Device selection
e zfs mg noalloc_threshold
e Metaslab selection (region on that device)
e improved metaslab preloading
e space_map histogram
e fragmentation metric
e Block selection
e cursor fit allocator

OpenZFS

Defining fragmentation

e Segment-based metric

e 16M or larger segment is 0% fragmented

e 1K or smaller segment is 100% fragmented

e 50% fragmentation means majority of free space is comprised of 128K
segments

e Metricis in-core only and may change in the future

metaslab 2 offset 40000000 spacemap 52 free 163M
On-disk histogram: fragmentation 80%
100% 10 (1K): 2 *

98% 11 (2K): 11 *

95% 12 (4K): 749 **x

90% 13 (8K) : 11417 ***kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkhkkkkkkkk

80% 14 (16K): 1654 ***k*x

70% 15 (32K): 210 *

60% 16 (64K): 59 *

50% 17 (128K): 41 *

40% 18(256K): 24 *

30% 19(512K): 5 *

20% 20 (1MB): 1~

15% 21 (2MB): 1~

OpenZFS

Looking back...

Frag Benchmark Comparison (2013)
69.89% B Baseline
W 2013

5000

4000

8K IOPS

3000

2000

1000

60% 70% 80% 90% 100%

Pool Capacity

D=/ —HI>XX° OpenZFs

Where are we going?

e Device selection
e allocation throttle

e Metaslab selection (region on that device)
e dynamic metaslab selection

e Block selection
e hole-filling

D=/ —HI>XX° OpenZFs

Dynamic Metaslab Selection

e Change the weight from space to segments

e Requires space map histogram feature
e Encodes the largest contiguous region into the weight
e Metaslabs with larger regions are considered “best”

o Space based weighting:

56 48 40 32 24 16 8 0
+-—————- +-—————- +-—————- +-—————- +-—————- +-—————- +-—————- +-—————- +
| PS1 | weighted-free space |
LT LT LT LT LT LT LT LT +

e Segment-based weighting:

64 56 48 40 32 24 16 8 0
+-—————- +-—————- +-—————- +-—————- +-—————- +-—————- +-—————- +-—————- +
|PSO| idx| count of segments in region |

=== === === === +-—————- +-—————- === === +

OpenZFS

Frag Performance Results

Frag Benchmark Comparison (2014)
M Basceline | 2013 | 2014

14.39%

4 000

8K IOPS

3000

2 000

1.000

60% 70% 80% 90% 100%

Pool Capacity

OpenZFS

Reducing Fragmentation

Reducing Fragmentation

~ M 201410PS 2013 Fragmentation [l 2014 Fragmentation)
15% 6000
90% 4500
o
e
3
[W
o Q.
g) 35% 3000 Q
o X
Ty o
°
o
oo
80% 1500
75% . . l . I 0
60% 70% 75% 80% 85% 95%

Pool Capacity

OpenZFS

Going further
e Hole-filling

e Metaslabs are sorted by holes

e Allocate from crappy metaslabs during times of low write
activity

e Preserve pristine metaslabs for heavy write loads

Filling Holes
B 2014
90% B 2014
w/Hole
80% Filling
o
S
= 70%
@
S
%
T 60%
50%
55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Pool Capacity

D=/ —HI>XX° OpenZFs

What’s next

e Allocation throttle improvements
e Directed device selection
e Synchronous write improvements

Questions?

DE[FI—!I)—(

Thank You

George Wilson
gwilson@delphix.com
@zfsdude

© 2014 Delphix. All Rights Reserved

4

r 4

3 }.?’
A
AN

OpenZFS

Backup Slides

D=/ —HI>XX° OpenZFs

Recent changes

e zfs mg noalloc_threshold
e percentage of free space that makes a device eligible for

allocations
e any device that does not have this percentage free is
skipped
e |Improved metaslab preloading
e Load more metaslabs before we reach allocation path

(avoid reading during writes)

D=/ —HI>XX° OpenZFs

Recent changes

e space_map histogram
e Maintain on-disk histogram of free segments in power-of-
2 buckets
e Requires pool to be upgrade (new feature flag)
e space maps have to be upgraded to maintain
information (happens when space maps condense)
e Ability to retrieve histogram of free segments
e zdb -mm - provide on-disk histogram (requires feature
flag)
e zdb -mmm - add in-core histogram (requires all space
maps to be loaded)
e Running ‘zdb’ fails when pool is busy or mostly full

